A través de un proyecto de la UNCuyo, aplican inteligencia artificial para mejorar el pronóstico de cosecha

Pronostico de cosecha mediante Machine Learning2 (1)
Pronóstico de cosecha mediante Machine Learning
WhatsApp
Facebook
Twitter
Imprimir

Una investigación de la UNCUYO indaga en la utilización de machine learning aplicado al proceso de estimación de cosecha de vid, con el fin de perfeccionarlo y disminuir el error de predicción. Estas tecnologías buscan optimizar los parámetros de producción y planificación en la industria agrícola, y hacerlo extensivo a otras frutas y en la identificación de malezas.

El diagnóstico por imagen aplicado al mundo del agro está cada vez más consolidado y ha despertado el interés de la comunidad científica local. Prueba de ello son los avances de una investigación de la UNCUYO sobre la implementación de algoritmos de reconocimiento de imagen para colaborar con el pronóstico de cosecha de vid, y de otros frutos, así como en la detección de malezas.

Actualmente, la metodología que se utiliza para la estimación de cosecha está dada por el recuento de racimos por planta y el cálculo del peso. “La incorporación de tecnología basada en machine learning —aprendizaje autónomo— intenta contribuir con la disminución del error de estimación. Esta información complementa la ya existente y colabora en la optimización de la planificación y producción en la industria agrícola”, explicó el ingeniero Luis Chiaramonte, codirector del proyecto.

El ingeniero detalló que machine learning es una disciplina del campo de la Inteligencia Artificial que, a través de algoritmos, posibilita a los ordenadores identificar patrones en datos masivos y elaborar predicciones (análisis predictivo). Este aprendizaje permite a las computadoras realizar tareas específicas de forma autónoma, es decir, sin necesidad de ser programados. 

Con el desarrollo de esta investigación se verán beneficiados, primariamente, los productores regionales. “En la primera fase del proyecto el algoritmo fue entrenado para el reconocimiento de racimos de uva. En la segunda, se seguirá el mismo proceso de trabajo, para hacerlo extensivo al resto de frutas, y por tanto, de los sectores frutihortícolas”, aseguró Chiaramonte, quien es coordinador del Centro de Investigación del Instituto Tecnológico Universitario.

Leer también: Cannabis medicinal: la UNCuyo estudia métodos de producción y propiedades químicas de aceites en circulación

“Además -agregó el investigador- se ha incorporado la posibilidad de identificar maleza para el correcto tratamiento de su erradicación, lo que impacta en el uso eficiente de los herbicidas, en la disminución de los costos de logística para su aplicación, al tiempo que contribuye con el cuidado del medioambiente, ya que se dejan de usar herbicidas genéricos para utilizar los específicos en cada caso”.

“La investigación continúa con la integración de pronóstico en otros tipos de fruta de distinta temporalidad, con lo cual se abre la posibilidad de entrenar el algoritmo todo el año para lograr el funcionamiento óptimo que se requiera en estos estudios”, apuntó Chiaramonte.

El equipo —integrado por profesionales del ITU, de la Facultad de Ciencias Agrarias y del INTA— espera obtener un prototipo de bajo costo producido localmente que pueda ser tomado de base por instituciones como el INV, el IDR, asociaciones de productores y otros entes para futuras estimaciones de cosecha y para asistir en el uso de herbicidas y retiro de malezas.

Una tecnología que llegó para quedarse

El proyecto, titulado “Mejora del pronóstico de cosecha de vid mediante tecnologías de machine learning, computación distribuida y robótica”, involucra a un conjunto de unidades académicas de la UNCUYO. 

Se desarrolló en fincas de Junín y, principalmente, en el predio del INTA, en Luján de Cuyo. Para capturar los espalderos de vid, se utilizaron cámaras de celulares a una distancia aproximada de 1 metro y se realizaron capturas con un dron. Las imágenes obtenidas fueron etiquetadas con el software LabelImg que permite indicar con un rectángulo y un nombre a cada objeto que se desea que los algoritmos de machine learning identifiquen.

Como algoritmo se utilizó la arquitectura YOLOv3. El mismo está incluido dentro de la biblioteca de Python Image al que se integra con TensorFlow y se ejecuta en aceleradoras Graphics Processing Units (GPU). Para el análisis de imágenes se recurrió a la infraestructura de hardware disponible en el Cluster Toko de la Facultad de Ciencias Exactas y Naturales (FCEN, UNCUYO).

Otros detalles de la investigación

Integran el equipo el profesor del ITU e investigador del CONICET, Emmanuel Millán (director); el profesor de Ciencias Agrarias, Marcos Montoya; el ingeniero de Know-Center GmbH (Austria), Lucas Iácono; y el CEO de la empresa Agropraxes SRL, Federico Framarini.

El proyecto obtuvo financiamiento de la Secretaría de Investigación, Internacionales y Posgrado (SIIP, UNCUYO) y también fondos del ITU destinados a la compra del dron con el que se tomaron las imágenes para entrenar el algoritmo.

De estos resultados surgió una publicación (con referato) que se presentó en el XXVI Congreso Argentino de Ciencias de la Computación y el desarrollo de una tesina de grado de la estudiante Tatiana Parlanti (Licenciatura en Ciencias Básicas con Orientación en Matemática, FCEN).

Además, con este trabajo se inauguró, recientemente, el ciclo de charlas “Investigación y Networking” que impulsa el Área de Innovación de la UNCUYO para promover la divulgación de las ciencias poniendo en valor a investigadores locales.

Deja un comentario

Tu dirección de correo electrónico no será publicada.

LAS MÁS LEÍDAS

Sigue Leyendo